Quantifying Fluid Flow in Sedimentary Basins: A Petroleum Perspective

Andrew Aplin School of Civil Engineering and Geosciences Newcastle University

Andy Chadwick (BGS) Christian Hermanrud (StatoilHydro) Stephan Duppenbecker (BP) Peter Butterworth (BP) Joe Cartwright (Cardiff University) Mads Huuse (Aberdeen University) Walid Mohammed (BP/Newcastle University)

The Petroleum Industry's Interest in Fluid Flow Includes

- Production from oilfields
- Predicting pore pressure
- Seal capacity and petroleum leakage
- CO₂ storage

Outline

- Looking into sedimentary basins
- Modelling fluid flow
- Learning about leakage
- Some things we don't know

Looking into Sedimentary Basins: Seismic Images and Downhole Logs

bp

Perspective view of West Nile Delta seabed

10km

AN WAR SELECT

Rosetta "Canyon"

MTC

K_1X_LIBRA

Remnant MTC

Rosetta "Leveed Valley" avulsion

Mud

volcano

MTC

40ms RMS Amplitude Extraction

Seismic Section

High Resolution Seismic with Interpretation

True Structure of Alba Reservoir Revealed by Enhanced Seismic Data Quality

1989 3D

1999 3D

Bain (1993), Newton & Flanagan (1993), Lonergan & Cartwright (1999), MacLeod et al. (1999)

www.3DLab.org.uk

Borehole evidence for remobilized/injected origin of massive sandbodies overlain by ratty sands

CARDIFF

UNIVERSITY

PRIFYSGOL

Fluid Flow, Pore Pressure Prediction and Safe Drilling: A Caspian Example

Stephan J. Duppenbecker et al.

The Challenge: Safe Drilling into High and Complex Pressure Regime

Step 1: Basin Scale Seismic Gives the Basic Sequence of Rock Types

Step 1=: Fieldwork to help calibrate seismic stratigraphy

•Interbedded fluvial and fluviodeltaic sands with shallow water lacustrine mudstones.

•Mudstones with exposure indicators.

Step 2: Build Regional Geologic Cross - Section

Step 3: Evaluate Geological History of Chosen Geological Structure

UPLIFT EVENT WITHIN LAST 1MY

hr

Step 4: Build 3D Geological Model and Parameterize in Terms of Fluid Flow

Code	Name	Color	Pattern
1	Limestone		
2	Shale_45CF		
3	LW_N:G		
4	Shale_35CF		
6	Shale_45CF_DW		
7	Shale_45CF_carb		
8	Shale_45CF_MTC		
13	HG_N:G		
21	Tight_Shale_55CF		
22	Evaporite_Mudstones		
23	Evaporites		
5	LW_N:G_Sandy		
88	SR_Rich		
99	SR_Lean		

Steps 5 and 6: Run Model, Compare Results to Existing Data, Recalibrate Model, Iterate

Model calibrated to well data

1D Result from Early Fluid Flow Simulation

Fluid Pressure

Leakage: Geological to Human Timescales

Gas Leakage on Geological Timescales

Storage at Sleipner

CO₂ separated from natural gas ~ 1 Mt per year since 1996 >10 Mt now in situ

Utsira formation well logs

StatoilHydro

Field analogue of the Utsira formation?

StatoilHydro

Deep monitoring at Sleipner

CO₂ injection commenced 1996

- ~ 1 Mt CO_2 injected per annum
- > 10 Mt currently in situ

Surface seismic – 3D coverage

www.bgs.ac.uk

vertical sections

horizontal slices

Early CO₂ flow models

Zweigel et al, 2002

Detecting migration in 3D volume above reservoir

Early warning of subsequent leakage

2D areal slice

2002 – 1994 difference

Sleipner 2002 – no detected migration of CO₂ from the reservoir

Uncertainties 1: Sub-seismic and sub-log discontinuities

Uncertainties 2: Sometimes large-scale geological discontinuities compromise the seal....but not where oil & gas is retained

Uncertainties 3: Rapid Changes in Stress Regime may cause fracturing of the overburden

Probably not relevant to Rad Waste?

Uncertainties 4: where there is leakage, what are the rates and flowpaths?

Finally

- Our ability to image the subsurface and to model fluid flow on human and geological timescales is better than ever
- But: there is always uncertainty

